Chapter 1

Transmission Lines and S-Parameters

1.1 Review of Transmission Lines

In our study of microwave circuits, we will be extensivelyingsour knowledge of transmission lines. We
therefore need to review a few concepts from transmission thieory. We will only need the sinusoidal
steady state, so line voltages and currents will be in phasor. The phasor voltag€(z) and current/(z)
are defined in terms of the time-dependent voltage accotding

v(z,t) = Re{V(z)e!*'} (1.1)
i(z,t) = Re{[(z)ej“’t} (1.2)

Z

Figure 1.1: A transmission line. The two wires are only a stdiic representation, because many different
types of structures can be modeled as transmission lines.

1. Differential (Telegrapher’s) Equations:
The governing equations for the line current and voltagepatiat z on a lossless line are

dv(z,t) di(z,t)

0z = L ot (1.3)
di(z,t) ov(z,t)

o= - T (1-4)
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whereL (H/m) andC' (F/m) are the distributed inductance and capacitancegcéisply. In the sinu-
soidal steady state,

dV (z)

T = —jwLl(2) (1.5)
dgj) = —jwOV(2) (1.6)

Substituting the second equation into the first gives

d*V(z) . dI(z) 9
= —jwL = —w’L 1.7
12 JwL—~ wLCV (z) 1.7)
which leads to the Helmholtz equation,
d?V (z) 9
7.2 +w BLC V(z)=0 (1.8)

where = wv/ LC is the wavenumber of the sinusoidal waves.
The general solution to this differential equation is

V(z) = Ae P 4 Betil? (1.9)

whereA and B are unknown coefficients. The corresponding current is

_ 1 dV(z) _ B [, s iB2
Iz) = jwL dz — wL {Ae Be ]
_ ! [Ae—ﬂ'ﬁz—Beﬂ'ﬁZ] (1.10)
L)C
We define
7, =L (1.11)
o — C .

as thecharacteristic impedancef the transmission line, because it gives the ratio betwleeroltage
and current waves at a point on the line. Note that this gtyarginonzero even though the line
is lossless. What is the difference between characterisfgedance of a transmission line and the
impedance of a circuit element?

Using the characteristic impedance, we can write the cumeihe line as

A . B .
I(z) = Z)e‘”z - Zeﬁz (1.12)

In the time domain,
v(z,t) = Re{Aej(“’t_ﬁz) + Bej(“’Hﬁz)} = Acos(wt — Bz) + B cos(wt + (=) (1.13)

so that theA term represents a forward traveling ) wave and the3 term is the reverse wave.

2. Wavelength: This is the distance between two peaks of the forward or severve:

_27T

Bz =0BA=27 — A 3

(1.14)
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3. Phase Velocity: In order to stay on a peak of the wave, the argument of one afdkime functions
in (1.13) must be constant. From this idea, we can deterrhm@hase velocity of the wave:

wt — Bz = ¢ = constant (1.15)
: = “’tﬁ_ ¢ (1.16)
dz w 1
T a3 VIc (1.17)
Zy |
Vg [3 ZO ZL
1 : Z
- 0

Figure 1.2: A transmission line with generatorzat —/ and load at = 0.

4. Reflection Coefficient: Consider a line of characteristic impedariégand length/ terminated with
a load impedance df, as shown in Fig. 1.2. Let = 0 be defined at the load, such that the input is
atz = —/. From the general solutions derived above, the voltage amémt on the line are

V(z) = Ae 9P 4 Betib= (1.18)
A . B .
I(z) = Z)e‘”z—zeﬂﬁz (1.19)

The coefficientsd and B are determined by the boundary conditions at the load anergtar ends of
the transmission line. At the load end, the current and geltan the line must be equal to the voltage
across the load and the current through the load, which &tedeby Ohm's law, so that

V)  A+B

Iy ="t =g 1.20
At the generator end, Kirchhoff’s voltage law gives
Vo = V(=) + Z41(—2)
JBL | ge—ift A jse B __jse
= Ae + Be + Zg 76 — 76 (121)

Equations (1.20) and (1.21) provide two simultaneous égpsthat can be solved for the two un-
knowns in the problemA and B. Once we have these two coefficients, we know the current and
voltage everywhere on the line, and the problem is solvecalmse we can get any derived quantity
that we want from the current and voltage.

We could solve Egs. (1.20) and (1.21) using any method forirsplsystems of equations. It is
convenient to solve these equations in a way that gives sdtudwo very useful quantities, the load
reflection coefficient at = 0 and the input impedance at= —/. To do this, we first solve the load
equation (1.20) fo3 /A, which is the load reflection coefficient:

B Zp-Z,

,=-—=2>-~_=° 1.22
A Zr+ Z, ( )
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We can also define a generalized reflection coefficient at gihiats on the transmision line as

V~(2) B Betibz o (1.23)

() = VH(z) Aeibz ¢

5. Input Impedance: At the generator end of the line & —/),

— JBe —JjBe —j2p¢
Zm:V( E):ZOAG. + Be ” Ol—l—I‘oe ‘ (1.24)
I(—¢) AeiBt — Be—ibt 1 —Tye=i25¢
Using (1.22) and (1.24),
jB¢ _ —jBe i
4 — 7 (Z + Z,)eP +(Z1, — Zy)e 21, + jZ, tan Bl (1.25)

T 7L + Z,)eiPt = (Zp — Zo)e 3P~ “°Z, % jZ tan L

This can be used with the generator voltage and impedancévefer V' (—¢). UsingV (—/) together
with Eqg. (1.18) written in the form

V(=€) = A(e?P* T ,e75) (1.26)
allows us to find4, which completes the solution of the transmission line fmobin Fig. 1.2.

6. VSWR: The voltage standing wave ratio is the ratio of the maximungmitade of the voltage along
the line to the minimum:

V() = Aeib [1 +roeﬂﬁz] (1.27)
V(2)[max = [A[[1+ |Tol] (1.28)
[V (2)lmin = [A[[1— T[] (1.29)
L+ ||
VSWR =L, (1.30)
7. Matched Line:
Z1, =27, I'r=0
Zin(—0) = Z, VSWR=1
8. Short-Circuited Line: . ¢
Zin(—t) = ZO% — jZ, tan B¢ (1.31)
9. Open-Circuited Line:
A
Zin(—l) = —— = —jZ, 1.32
(=0 = gy = ~9Zocot Bt (1.32)

10. Quarter-Wave Line:

A iZ, 2 Z?
Din(—t = —\J4) = 7, 2Lt 2o tanm/2 2,

, =0 1.33
Zo+ jZptann/2  Zj ( )
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1.2 Microwave Networks and S-Parameters

Previously in our study of transmission line theory, we hfa@ised mainly on the transmission line it-
self. Now, we would like to view transmission lines merelycasinections between devices, and shift our
emphasis to the properties of the devices themselves.

A microwave network is a device or structure to which one orenttansmission lines are connected. Each
transmission line connection to the device is a port. Xfport network is shown in Fig. 1.3. Power
splitters, lumped elements, amplifiers, antennas, a seofioransmission line, and many other structures
can be modeled as networks.

As with a circuit device, a network can be characterized im$of the voltage/current relationship at each
transmission line port. For a simple parallel wire transiois line, defining the voltage at a point on the line
is straightforward. But for waveguides, voltages are mdifecdlt to define for non-TEM modes. Even for
a TEM mode, voltages and currents are difficult to measuectjr at microwave frequencies, because of
the rapid oscillation with time. Consider, for example, hiast a digital sampling oscilloscope would have
to operate to accomplish this measurement.

Instead of using voltages and currents to characterizeigimals on the transmission line ports, we use a
representation that is based on the relative amplitudenoidént, reflected, and transmitted waves for a
structure. Regardless of what the network may be physjaatiyach transmission line port there can only
be a forward wave (incident) and a reverse wave (reflectecnstnitted by the network) with some steady
state amplitude. This means that instead of characterthi@gignal on a transmission line usiiidz) or
I(z), we use the ratios between the forward and reverse wavesednatfismission lines. For a network
connected at each port by transmission lines to other devé@eh transmission line will have a given value
for this ratio. If the other devices are all matched and a amiplitude forward wave is excited as an input
into one of the ports, then the values of the reverse wavesgomat the ports are completely determined by
the device and can be used to characterize the microwaventiegof the device. These values are called
the scattering matrixor S-matrix We will generally use the teri8-parameterso describe the elements of
the S-matrix.

The S-matrix is defined to relate the incident and reflectecbveanplitudes at the ports of the network:

Vim S Sz - Sin Vli
Vs~ S S - S V.
F || s won
VN Sn1 Sn2 - Snw Vi
or
V-]=I[s1[v"] (1.35)

From this expression, it can be seen that in general, theibwive at a given port is a function of the input
waves at every port. If there is no input wave on any port eifieghe jth port, then all of the elements of
the vectorV ™ are zero except fijJr, and the S-parameters can be expressed as

J VT
J VT =0 for k#;

This formula shows that an S-parameter is similar to a géimedareflection coefficient, since it is defined
the same way a¥(z) in Eq. (1.23). The only difference between (1.36) and (1i83hat the forward
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Reference
Plane

v: -
1 | _
—H V,

V; ]
~—H V, Network

Figure 1.3:N-port network. Each port is a transmission line, leading tieace or structure that connects
the ports. At a fixed reference plane for each port, the veltagplitudes of the forward and reverse traveling
waves ard/,;" andV,", respectively.

wave is on thejth port and the reverse wave is on title port. Equation (1.36) shows how to measure the
S-parameters;;: inject a known signal into porf and measure the signal at perwith all other ports
terminated with a matched load.

1.2.1 Reference Planes

The S-parametes§;; is a complex number that can be represented by a magnitudphase. The phase
of the ratio in Eqg. (1.36) depends on the location along thasimission line at which we measure the
S-parameter. The location at which the measurement is rsazigied the reference plane.

We can derive an expression for how the S-matrix changeg ifaference planes at each port are changed.
For a N-port network[V~] = [S][VT]. If we change the reference position of thih port a distancé,,
away from the device, the new input and output waves areexbtatthe new S-matrix by’ ~'] = [S/][V+].
From transmission line theory,

Vn+/ _ Vn+ej,8nfnzvn+ej€n N Vvt = Vn+’e_j9n
(1.37)

Vo = Voeibubn — y—emifn - Vo o= Vel

n n
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Placing these equations into matrix form gives

edr o ... 0 e—i01 0 .. 0
02 ... —jo2 ...
? ¢ } O v =18 0 ° § 0 v s
6 .. 0 ej'BN 0 .. 0 e—J.'HN
or ) ) )
v=]=[O]s]e] V] =[sVT] (1.39)
(9]

where® is the matrix of phase shifts in Eq. (1.38). This result shtvns the scattering matrices for the
same network but with a different choice of reference plaregelated.

1.2.2 Generalized S-Parameters

So far we have assumed that the characteristic impedanadisobfthe transmssion line port are the same.
This is often the case. But in many practical situations, ithpedances are different. In this case, for
convenience we redefine the S-parameters so that they atedéh a simple way to the power flowing
through each of the ports.

Recall from transmission line analysis that the averaga)(power associated with a voltage wave is given
as|V|?/2Z,. Therefore, we can write for a two-port device where theresfee impedance is different for
the two ports (and the device is matched)

Vi
P, = 1.40
571 (1.40)
Vo |2
Py —= 1.41
L= S (1.41)
so that VP
Pout ‘/2_ Zol
= 1.42
Pin "/1+’2 ZOZ ( )
If we define generalized S-parameters by
vV V- b;
Ay = n bn = n Sij = — (1.43)
Zon Zon @j lap=0 for k#;
then
1
Py, = §\a1]2 (1.44)
1
Pt = §\b2\2 (1.45)
The ratio of input and output power is
Pout ’b2’2 2
- _ =S 1.46
Pi ’a1’2 | 21| ( )

which is more convenient than (1.42). Notice that genezdli@-parameters reduce to the same definition as
in (1.34) if the impedances at each port are the same.
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1.2.3 Lossless Networks

For lossless networks, no real power is delivered to the owtwl he time average power delivered to each
port is

P = SRe{IVI'I)Y}
= SRe{ (" + OV Z] ™ (ol — 1))
= SRe{([a]"[a]" ~ [a]" Bl + 11" Tal” — (67 1)} (1.47)

where[\/Z,] is a diagonal matrix witth diagonal entry/Z,,, and the superscrigt represents the matrix
transpose operation. The middle two terms of this expraggii@ an imaginary result. The other two terms
are purely real. But sincg,, is the average power delivered to the network, the real past ive zero:

Py = 5 ([a]"[a]* — 0] [b]") = 0 (1.48)
The first and second terms represent the power entering atiugethe ports, respectively. This equation
implies that
= [a]"[S]T[S]*[a]* (1.49)

which in turn implies that
[S]T[S]* = I = Identity Matrix (1.50)

A matrix that satisfies this relationshipusitary. We can also write this condition as

N
> Skt =6 (1.51)
k=1
or N
. 1 i=j
> SkiSy; :{ Y (1.52)
pt 0 i#j

Equations (1.50)-(1.52) all state the same condition, Wwifisatisfied by the scattering matrix means that
the network must be lossless.

1.2.4 Reciprocity
A network is reciprocal if
18] = [S7] (1.53)

where the superscript denotes the matrix transpose opera€onsider the S-parameters of an isolator,
which only allows a one-way flow of energy through a two-patwork. Would the matrix satisfy (1.53)?

Reciprocity should not be confused with network symmetoy. &2-port device, network symmetry means
that S1; = Se9, SO that port 1 behaves like port 2 if a signal is input to onthefports and the other port is
terminated with a matched load. (as well as $he = S2; imposed by (1.53) if the network is reciprocal).
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Chapter 2

Passive Structures

2.1 Lumped Element Matching

Matching is a key part of any RF/Microwave circuit design. eTtasic concept of matching is to couple
energy from a transmission line into a load with as littleaefiion as possible. But in practice, matching is
used for much more than simply minimizing reflection coeffits. Using appropriate matching techniques
we can control gain, noise figure, and stability for a device.

There are a variety of techniques available for matching.Widfirst consider the simple but very useful

case of using two lumped elements to accomplish a match ag&edrequency. There are eight potential
topologies available of this form (not all of which will beigble for a given problem). Two possible

matching configurations are shown in Fig. 2.1.

X[ | X

Zy iB Z, Z, jB Z,

(@) (b)

Figure 2.1: Matching network topologies. (a) Series reamdollowed by a shunt susceptance. (b) Shunt
susceptance followed by a series reactance.

2.1.1 Analytic Solution

We begin by formulating an analytic solution for this matahiproblem. Consider the case of a series
reactance followed by a shunt susceptance. 4,et= Ry + j X with admittanceY;, = G + jByr. In
order to match the input td,, we must have

1

Z, = jX + - .
= I T IB+GL+ By

2.1)
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If we cross multiply and separate into real and imaginaryspave obtain the two equations
1-(BL+B)X = GpZ, (2.2)
(BL+B)Z, = GpX (2.3)
If we solve the second equation f&r and put this into the first equation, we obtain the solutions
B = £JGi(Y,-GL)- B (2.4)

(Yo —G1)/GL
Y,

X = =+ (2.5)
where if you choose the top (bottom) sign for the first equmgiou must use the top (bottom) sign for the
second. So, this topology provides two possible soluti@medding on the sign used. Note that in order for
the term in the radical to remain positive, we must hdye> Gy.

If we repeat the analysis for the topology in Fig. 2.1b, a slsusceptance followed by a series reactance,
we obtain the solutions

X = +Ri(Z,—Rr) - X1 (2.6)
(Zo — R1)/RL

B = +
Zo

2.7)

where if you choose the top (bottom) sign for the first equmtimu must use the top (bottom) sign for the
second equation. In this case, we must hdye> R;.

Note that in these derivations, we are matching a complaktoa real impedance. We could also match a
complex load to a complex impedance using these networks.

2.1.2 Smith Chart Solution

Itis perhaps most instructive to demonstrate lumped-eimeatching on the Smith Chart using an example.
Suppose we want to matcly, = 252 to a50f2 line at 1 GHz..

1. NormalizeZ;:

Zo
Pick a topology: Sincé?;, < Z,, we must use the topology with a shunt susceptance followet b
series reactance.

2] 0.5

2. Work from the load to the source impedance. We want to wessdhes reactance to get a normalized
admittance of the form 4 jz, so we can the shunt susceptance to cancelthgart and get a match
(normalized impedance = 1). We do this by adding enoughaeaetto move to the reflectad+ jx
circle, so from the Smith chart, there are two points we cantis= 0.5, andx = —0.5. We then
reflect to an admittance, so we can add the shunt susceptance.

3. Now, add enough susceptance to move to the center of thi Stmart:6 = 1.0, orb = —1.0 for the
other solution.
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4. Convert the values to components:

2w fLg X >0
X:ZOx:{—fl X <0
27w fCs
b o fC B>0
B=Yb=— = P
Zo {_27T}Lp B<0

For this example, we get

jX = +j25=jwL = L~4nH
jB = +j/50 = jwC = C ~3.2pF
or C ~ 6.4 pF, L ~ 8 nH for the other solution.

5. At higher frequencies, you might have to realize thesepmmants using transmission line stubs
instead of lumped elements. In this case:

Open-Circuit Stubs

Zo
xr = —CTO:M:—CO‘L[%
Y,
b = t;i;lﬁg:tan[%
Short-Circuit Stubs
Zot 14
r = %jﬂ:tan[%
Y, cot B¢
b = —%ﬂz—cotﬁﬁ

You can then solve for the appropriate length.

Note that we can very easily use combinations of transmidgies and lumped elements when we are using
the Smith Chart to match.
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2.2 Multisection Quarter-Wave Transformers

Recall that a quarter-wave section of transmission linebsansed as a matching network. From Eq. (1.25),
the input impedance looking into a quarter-wave lifié £ 7 /2) is
Z1, + jZq tan 8L _ le

Zin = 7 / =21 2.8
Y2 ¥ iZotan Bl 7, (2.8)

where Z; is the characteristic impedance of the quarter-wavelefigéh If we want to match a line of
characteristic impedancg, to the load, we must have
22
Zy = Z—l = Z1 =207y, (2.9)
L
What is the bandwidth of this matching network? If we charigeftequency, the? is no longer equal to

m /2. The reflection coefficient is
Zin — Zo

" Zin + Zy
whereZ;, is given by (1.25). Figure 2.2 shows the magnitude of theatfie coefficient as a function of
frequency relative tgfy, where fj is the frequency at which we have a perfect match. How can we ge
broadband match?

(2.10)

0.9r
ZL/ZO: 8

0.8¢

Figure 2.2: Magnitude of reflection coefficient as a functadrfrequency for a quarter-wavelength trans-
former.

2.2.1 Small Reflection Theory.

Suppose that,, Z;, and Z;, are close in value. If this is the case, then the reflectiorfficant can be
approximated by the first reflections from the two discoritias in the transmission line:

[ ~Tg+ e %! (2.11)

Jensen & Warnick October 27, 2009



ECEnN 464: Wireless Communications Circuits 13

where
Z1— Z,
r, — 1 0
Z1 + Zy
Zr — 7
r, = 22t
2+ 2y
0 = pe

For a multisection transformer as shown in Fig. 2.3 withisestof impedance,, Z1, Zs, ..., Zy followed
by a loadZ;, the reflection coefficient is approximately

I ~Tg+Tie 29 ... 4 Tye 2N0 (2.12)

If we assume that the sections are symmetrical, solthat I'y, I'1 = I'y_1, and so on, then we can
combine pairs of terms to get

[ =2¢ 7N (Docos NG + I’y cos (N —2)8 + - - +FN/2/2) (2.13)

for N even, with a similar expression fé¥ odd. Notice that this is a Fourier cosine series! This means
that we can get any reflection coefficient as a function ofdfezgy we want, with enough sections and
by choosing the individual reflection coefficiers properly. There are a number of different ways to
accomplish this.

|
Z, Z, zZ, ... Zy [z,

Figure 2.3: Multisection quarter wavelength transformer.

Binomial Multisection Matching. One possibility is to choose the reflection coefficient to be form
D =A(1+e 2NN (2.14)

Sincel + e~21% = 0 for § = /2 (at the center frequency), near the center frequency tkistidy is small,
and raising it to theVth power makes it even smaller. This means that the reflectefficient is closer to
zero over a broader band around the center frequency fa IdrgMore rigorously, this form means that
N — 1 derivatives ofl" atd = 7/2 are zero.

The constantd can be found by letting the frequency go to zero in (2.14) asidgithe fact that at very low
frequencies the sections are electrically short and hagkgitee effect on the reflection coefficient:

ro)=2%4= % (2.15)
If we expandl" using the binomial theorem, we get
= A(%V) + A<]1V> e 20 .. A(%) e 2ING (2.16)
where the binomial coefficient is N N1
<n> - (N —n)!n! (2.17)
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By comparing this equation to (2.12), we can read off the emlafI',, and determine the impedances
21,71y ZN.

One way to get the impedances of each section from the vafugswould be to use the expression for the
reflection coefficient in terms of,, and Z,,. 1, but if we do this forZ,, Z3, and so on thet¥ 1 will be
slightly different fromZ. If we use

Zn+1 - Zn 1 Zn+1

T,=2nl="%n o 2y

~ 2.18
Zni1+ 2, 2 Zy (2.18)

instead, we avoid this problem and get a formuladgrthat is easy to use. From Egs. (2.12) and (2.16), we

find that
Zn+1 N
| ~ 24
! Zn, <n>
_ 2_N22L—Zo N
Zr,+ Zog\ n
~ 2—N<N> m 2L (2.19)
n ZO

from which each of the impedancé&s can be found starting with = 1.
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