Unilateral Amplifier Design

Two-port representation

 $G_{T} = G_{S}G_{0}G_{L} \text{ the unilateral transducer gain reduces to } G_{TU} = G_{S}G_{0}G_{L}$ $G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - \Gamma_{in}\Gamma_{S}|^{2}},$ $G_{0} = |S_{21}|^{2},$ $G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}.$ $G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}.$ $G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}}.$

Maximum Gain

The maximum gain occurs when both the input and output matching networks are designed to have a conjugate match

$$\Gamma_{\rm in} = \Gamma_S^*$$
$$\Gamma_{\rm out} = \Gamma_L^*$$

$$G_{TU_{\max}} = \frac{1}{1 - |S_{11}|^2} |S_{21}|^2 \frac{1}{1 - |S_{22}|^2}$$

Design for specified gain

 Maximum gain is not always needed and backing of on gain can improve bandwidth response

Normalized gain

 Gain relative to max gain for the input and output matching networks gives us the normalized gain for input and output

$$G_{S} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}},$$

$$G_{L} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}},$$

$$G_{S_{\max}} = \frac{1}{1 - |S_{11}|^{2}},$$

$$G_{L_{\max}} = \frac{1}{1 - |S_{22}|^{2}}.$$

$$g_{S} = \frac{G_{S}}{G_{S_{\text{max}}}} = \frac{1 - |\Gamma_{S}|^{2}}{|1 - S_{11}\Gamma_{S}|^{2}} (1 - |S_{11}|^{2})$$
$$g_{L} = \frac{G_{L}}{G_{L_{\text{max}}}} = \frac{1 - |\Gamma_{L}|^{2}}{|1 - S_{22}\Gamma_{L}|^{2}} (1 - |S_{22}|^{2})$$

Gain circles

- For a given gain and max gain we can plot circles of constant gain on the Smith chart for both source and load networks
- The accompanying equations predict the location of the centers and radii of the gain circles

$$C_{S} = \frac{g_{S}S_{11}^{*}}{1 - (1 - g_{S})|S_{11}|^{2}},$$

$$R_{S} = \frac{\sqrt{1 - g_{S}}(1 - |S_{11}|^{2})}{1 - (1 - g_{S})|S_{11}|^{2}},$$

$$C_{L} = \frac{g_{L}S_{22}^{*}}{1 - (1 - g_{L})|S_{22}|^{2}},$$

$$R_{L} = \frac{\sqrt{1 - g_{L}}(1 - |S_{22}|^{2})}{1 - (1 - g_{L})|S_{22}|^{2}}.$$

Specified gain example

EXAMPLE 11.4 AMPLIFIER DESIGN FOR SPECIFIED GAIN

Design an amplifier to have a gain of 11 dB at 4.0 GHz. Plot constant gain circles for $G_S = 2$ dB and 3 dB, and $G_L = 0$ dB and 1 dB. Calculate and plot the input return loss and overall amplifier gain from 3 to 5 GHz. The FET has the following *S* parameters ($Z_0 = 50 \Omega$):

f (GHz)	S_{11}	S_{21}	S_{12}	S_{22}
3	0.80 <u>∕−90</u> °	2.8/100°	0	0.66 <u>/-50</u> °
4	0.75/ <u>-120</u> °	2.5 <u>/80</u> °	0	$0.60 / -70^{\circ}$
5	$0.71 \angle -140^{\circ}$	2.3 <u>/60</u> °	0	$0.58 / -85^{\circ}$

Solution

Since $S_{12} = 0$ and $|S_{11}| < 1$ and $|S_{22}| < 1$, the transistor is unilateral and unconditionally stable. From (11.47) we calculate the maximum matching section gains as

$$G_{S_{\text{max}}} = \frac{1}{1 - |S_{11}|^2} = 2.29 = 3.6 \text{ dB},$$

 $G_{L_{\text{max}}} = \frac{1}{1 - |S_{22}|^2} = 1.56 = 1.9 \text{ dB}.$

The gain of the mismatched transistor is

$$G_o = |S_{21}|^2 = 6.25 = 8.0 \text{ dB}$$

so the maximum unilateral transducer gain is

$$G_{TU_{\text{max}}} = 3.6 + 1.9 + 8.0 = 13.5 \text{ dB}.$$

Thus we have 2.5 dB more available gain than is required by the specifications. We use (11.48), (11.51), and (11.52) to calculate the following data for the constant gain circles:

$G_S = 3 \text{ dB}$	$g_S = 0.875$	$C_S = 0.706 \underline{/120}^\circ$	$R_{S} = 0.166$
$G_S = 2 \text{ dB}$	$g_S = 0.691$	$C_S = 0.627 \angle 120^\circ$	$R_{S} = 0.294$
$G_L = 1 \text{ dB}$	$g_L = 0.806$	$C_L = 0.520 \angle 70^\circ$	$R_L = 0.303$
$G_L = 0 \mathrm{dB}$	$g_L = 0.640$	$C_L = 0.440 / 70^{\circ}$	$R_L = 0.440$

The constant gain circles are shown in Figure 11.8a. We choose $G_S = 2$ dB and $G_L = 1$ dB, for an overall amplifier gain of 11 dB. Then we select Γ_S and Γ_L

along these circles as shown, to minimize the distance from the center of the chart (this places Γ_s and Γ_L along the radial lines at 120° and 70°, respectively). Thus, $\Gamma_s = 0.33/120^\circ$ and $\Gamma_L = 0.22/70^\circ$, and the matching networks can be designed using shunt stubs as in Example 11.3.

Example 11.4 Smith Chart

Matching network and frequency response

 Use Smith chart to verify

See next page

NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES

